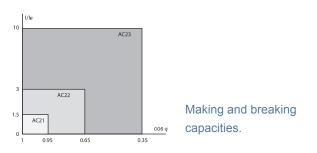
# IEC 947-1 & IEC 947-3 Standards




# Selecting Switches According to IEC 947 -3 Standard

| Utilization category |      | Use                                                                 | Application                                                                                                        |  |
|----------------------|------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| AC                   | DC   |                                                                     |                                                                                                                    |  |
| AC20                 | DC20 | No-load making and breaking                                         | Disconnector (device without on-load making and breaking capacity                                                  |  |
| AC21                 | DC21 | Resistive including moderate overloads                              | Switches at installation head or for resistive circuits (heating, lighting, except discharge lamps, etc.)          |  |
| AC22                 | DC22 | Inductive and resistive mixed loads including moderate<br>overloads | Switches in secondary circuits or reactive circuits (capacitor banks, discharge lamps, shunt motors, etc.)         |  |
| AC23                 | DC23 | Loads made of motor or other highly inductive loads                 | Switches feeding one or several motors or inductive circuits (electric carriers, brake magnet, series motor, etc.) |  |

## **Breaking and Making Capacities**

Unlike circuit breakers, where these criteria indicate tripping or short-circuit making characteristics and perhaps requiring device replacement, switch making and breaking capacities correspond to utilization category maximum performance values. In these uses, the switch must still maintain its characteristics, in particular its resistance to leakage current and temperature rise.

|                  | Making |          | Breaking |          | N° of operating |
|------------------|--------|----------|----------|----------|-----------------|
|                  | l/le   | cos φ    | l/le     | cos φ    | cycles          |
| AC 21            | 1.5    | 0.95     | 1.5      | 0.95     | 5               |
| AC 22            | 3      | 0.65     | 3        | 0.65     | 5               |
| AC 23 I ≤ 100 A  | 10     | 0.45     | 8        | 0.45     | 5               |
| AC 23 le > 100 A | 10     | 0.35     | 8        | 0.35     | 3               |
|                  |        | L/R (ms) |          | L/R (ms) |                 |
| DC 21            | 1.5    | 1        | 1.5      | 1        | 5               |
| DC 22            | 4      | 2.5      | 4        | 2.5      | 5               |
| DC 23            | 4      | 15       | 4        | 15       | 5               |



#### **Short Circuit Characteristics**

- Short-time withstand current (Icw): allowable rms current for 1 second.
- Short circuit making capacity (Icm): peak current value which the device can withstand when closed on a short-circuit.
- Conditional short circuit current: the rms current the switch can withstand when associated with a protection device limiting both the current and short circuit duration.
- Dynamic withstand: peak current the device can withstand in a closed position.

The characteristic established by this standard is the shorttime withstand current (Icw) from which minimal dynamic withstand is deduced. This essential withstand value corresponds to what the switch can stand without welding.

## **Electrical and Mechanical Endurance**

This standard establishes the minimum number of electrical (full load) and mechanical (no-load) operating cycles that must be performed by devices. These characteristics also specify the device's theoretical lifespan during which it must maintain its characteristics, particularly resistance to leakage current and temperature rise.

This performance is linked to the device's use and rating. According to anticipated use, two additional application categories are offered:

- Category A: frequent operations (in close proximity to the load),
- Category B: infrequent operations (at installation head or wiring system).

| le (A)                     | ≤ 100 | ≤ 315 | ≤ 630 | ≤ 2500 | > 2500 |  |  |
|----------------------------|-------|-------|-------|--------|--------|--|--|
| N° cycles/hour             | 120   | 120   | 60    | 20     | 10     |  |  |
| N° of operations in cat. A |       |       |       |        |        |  |  |
| without current            | 8500  | 7000  | 4000  | 2500   | 1500   |  |  |
| with current               | 1500  | 1000  | 1000  | 500    | 500    |  |  |
| Total                      | 10000 | 8000  | 5000  | 3000   | 2000   |  |  |
| N° of operations in cat. B |       |       |       |        |        |  |  |
| without current            | 1700  | 1400  | 800   | 500    | 300    |  |  |
| with current               | 300   | 200   | 200   | 100    | 100    |  |  |
| Total                      | 2000  | 1600  | 1000  | 600    | 400    |  |  |

#### Definitions

**Conventional thermal current (Ith):** Value of the current the disconnect switch can withstand with pole in closed position, in free air for an eight hour duty, without the temperature rise of its various parts exceeding the limits specified by the standards.

**Rated insulation voltage (Ui):** Voltage value which designates the unit and to which dielectric tests, clearance and creepage distances are referred.

**Rated impulse withstand voltage (Uimp):** Peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred.

**Rated operating current (le):** Current value determined by endurance tests (both mechanical and electrical) and by making and breaking capacity tests.

